Synaptic transmission is an important cellular event underlying development, learning, memory, and other functions of the brain. Neurotransmitter receptors, transporters, and ion channels mediate synaptic communication, and their dysfunction is frequently implicated in neurological and psychiatric disorders.
Our research group is pursuing molecular mechanisms of signal transduction with a specific focus on the synaptic communication, signaling, and plasticity at excitatory and inhibitory synapses. Synaptic plasticity is a process whereby certain synapses are strengthened and others are weakened during active learning and memory.
In many cases, neuroreceptors/ion channels form complexes and interact with scaffold proteins and signaling molecules to localize the specific site of synapses and to transfer information. Receptor functions are allosterically modulated by interacting proteins that regulate synaptic plasticity. We are interested in understanding the fundamental roles of neuroreceptors and their interacting proteins in this process.