Work in my laboratory is focused on the clinically relevant trypanosomatid parasites, primarily the African trypanosomes Trypanosoma brucei and Trypanosoma congolense, and the closely related American trypanosome Trypanosoma cruzi, and Leishmania species. These parasites are the causative agents of neglected tropical diseases that produce a substantial health and economic burden in endemic areas, and improved therapeutics are urgently needed. By examining the biology of these parasites we may uncover differences between the host and parasite biology that can be exploited to develop therapeutic treatments.
We are particularly interested in how African trypanosomes are able to sense and respond to its host environment, which is essential for their survival and virulence. The African trypanosome has a complex lifecycle requiring transmission by the insect vector the tsetse fly, propagation in a mammalian host, and reinfection of the tsetse fly. Trypanosomes are evolutionarily divergent eukaryotes and use exclusively post-transcriptional regulation of gene expression, making them an excellent model system to examine this process.
The laboratory uses a combination of genetics, cell biology and proteomics approaches to answer our research questions. We have pioneered stable isotopic labelling (SILAC) in T. brucei to enable global quantitative proteomic analysis, and established robust methods for quantifying changes in the phosphorylation state of the cell.